OCESE: Open-source computing for Earth Sciences Education

Website: https://eoas-ubc.github.io

Focus of the breakout session:

- Where you fit in the project (Francis presents specific case studies with concrete examples)
 - tag line: "low threshold, high ceiling"

Big picture: Decision making under uncertainty

- Why now? -- bridging EOAS, statistics and computer science
 - Wicked problems, exabytes of open access data, models with predictive skill
 - Open source collaboration, collective action and the climate emergency
 - EOAS faculty (new & existing) are keen -- Faculty Pro-D & support is a key project focus.

1

Faculty feedback from Nov 18:

What's in it for me? What benefits to students? What's it cost (in time, effort and maintenance)?

Participants asked questions like:

- What does "open source" imply for different courses, labs or activities?
- Where do I start? "no spare time to innovate"
- What about my teaching preferences? (lecture, Socratic, active worksheets, clickers, etc.)
- Why Jupyterbooks & Jupyter notebooks?
- I like my current content formats why change?
- Is there research on efficacy?
- · Are there entry level guidelines?

3

OCESE project is working on ...

- ◆ Generating & maintaining custom *opensource* textbooks & documents
- ◆ Dashboards: exploring & interacting with: |data | concepts | models |
- ◆ Jupyter notebooks: mingling text, math and executable code.
- ◆ Assigning 'authentic' homework
- Managing test questions & automating grading
- ◆ Setting up EOAS, FoS and institutional infrastructure & personnel
- Collaborating with local and global colleagues

5

◆ Textbook or docs. production

- Text-based (markdown)
- Rapid command-line construction with GitHub
- Easily convert LaTeX, MS-Word, PPTX, etc.
- Examples:
 - Project documentation: https://fhmjones.github.io/
 - Statistics used by STAT 201: https://moderndive.com/
 - Numerical methods: https://phaustin.github.io/numeric/
- Easy to learn: ~half day max.
- Open source (advisable!) ... or not.

Using Dashboards

Three types: explore *concepts, data, models*.

1) Interactively explore a concept

- Signal components:
 - Signal | Noise | Trend
- Implications for measurement and interpretation
- Impact / limits of smoothing
- Questions to guide thinking
- "Easy" to wrap data or algorithms with interactive components.

7

Demonstrate later if desired.

2) Explore datasets

- One year of hourly Ozone at 2 stns
- Compare two data sets
- Questions to guide thinking

Demonstrate later if desired.

3) Explore modelling

- CO2 at MonaLoa
 - Linear fit to segments.
 - Compare predictions
- Guiding questions via ...
 - On screen
 - In worksheets
 - Via Canvas questions
 - For built-in delivery (coming soon ...)

9

Dashboards summary

- "Low threshold" ways to engage & explore data, concepts, models
 - Instructors: Easily add to lessons or assignments.
 - **Students**: Easy to use "near zero" learning curve.
- · Benefits:
 - · Active, inquiry-based learning.
 - Guided discussions using on-the-fly trial & error and cause & effect.
- Evidence:
 - Instructors appreciate engaging in lively, demonstration-oriented discussions.
 - See also https://phet.colorado.edu/en/research

Jupyter notebooks

- Why go there? https://jupyter.org/
 - *Literate coding* = text/math/figs mingled with executable code snippets.
 - Open, reproducible, articulate science
 - Open, consistent, evolving education
- What does teaching / learning with them look like?

11

Jupyter Notebook: STAT 201 tutorial

- Worksheet as a Jupyter notebook online here.
 - Cells with instructions (text, math, tables, diagrams ...)
 - Cells with code and/or graphics
 - In-line, in-context questions to guide students' thinking.
 - Question **solutions** in the *instructor's* version.
- Students (or instructors) work through the Jupyter notebook one cell at a time.
 - Alone in groups labs tutorials in class etc.
- Open-source textbook: https://moderndive.com/

Jupyter notebooks summary

Currently used in: STAT 201, ATSC 301, EOSC 350, EOSC 213, & others.

- Complete lessons or tutorials deployed as Jupyter Notebooks.
- Learning sequence includes *quidance* and active *practicing*:
 - Guiding cells include math, figures, tables, diagrams, plots
 - Executable cells: > Write code snippets & run. > Supply answers & submit.
- Scaffolding helps students focus on concepts not code syntax.
- Embedded low-stakes questions to guide thinking (like clickers).
- Auto grading of questions.
- Careful choice of working data: real, relevant, both "ideal" & "real".

Benefits to students

Low threshold

- Rapid, reliable engagement with computer-based active learning in class.
- · Opportunities to explore concepts & datasets without overhead of finding data & processing it.
- Engagement with real and meaningful data sets, concepts and problems.
- Reduced barriers due to diverse computing platforms.
- · More active exposure to challenging concepts rather than abstract, "static" presentation of learning content.

Higher ceiling

- Exposure to, and practice with, **notebook-based thinking** about quantitative problems.
- · Practice applying fundamentals (math, programming) in higher level contexts
- Authentic practice using emerging collaborative procedures
- Earlier exposure to higher level analysis or interpretation tasks
- · Easily modified tests & assignments means reliable, up-to-date, authentic practice & assessment.
- Eg: students may be able to participate in https://cic.ubc.ca/ with sufficient background.

15

Learning curve for instructors

"Low threshold" options for engaging with OCESE goals and initiatives:

- · Familiarity with basic GitHub functions for storing and collaborating
- Convert local formats (LaTex, MSWord, Powerpoint, etc.) -to- Markdown text.
- A dashboard app for a class or assignment.
 - Plans for: ENVR 300, EOSC 329, EOSC 372, 373, and others.

Learning curve for instructors

"Low threshold" options for engaging with OCESE goals and initiatives:

- Familiarity with basic GitHub functions for storing and collaborating
- Local software → Markdown conversion
- A dashboard app for a class or assignment.

Move towards more sophisticated opportunities via one or more of ...

- Jupyter notebooks for coding, demonstrating, practicing.
- Making Jupyter Books for textbooks, or readings or lectures.
- Python as a "future ready" framework for developing coding skills.
- "Containers" for packaging dashboards or software for universal deployment.
- Python / Plotly / Dash for making or maintaining interactive dashboards.

17

OCESE infrastructure development:

OCESE is collaborating with UBC and global colleagues to enable ...

- 1) Local and/or cloud-based servers; "Jupyter hubs"
- 2) Deployments that guarantee success on all platforms; "containers".
- 3) Effective use of GitHub repositories (open or private)
- 4) Software & practices for the long term:>agility, >maintainability, >"shareability"
- 5) Professional development and training
- 6) Systems personnel

Recap: OCESE Project components

- ◆ ✓ Generating & maintaining custom *opensource* textbooks & documents
- ◆ ✓ Dashboards: exploring & interacting with: |data | concepts | models |
- ◆ ✓ Jupyter notebooks: mingling **text, math** and executable **code**.
- ◆ ✓ Assigning 'authentic' homework
- Managing test questions & automating grading
- ◆ Establishing EOAS, FoS and institutional infrastructure & personnel
- Collaborating with local and global colleagues

19

Questions to drive today's discussion

- Any questions? Are any project initiatives unclear?
- Which of these project components are you most excited about?
- Which do you think will improve your life as a teacher?
- Which will help students gain better, more transferrable skills?
- Which will make learning more inspiring?
- Is there anything that seems to be missing?
- What topics or skills will be most important to you for training sessions?

ADDITIONAL SLIDES

Included if needed for discussion

21

Time line – and targeted courses

		202	2020		2021			2022			2023		
Course		Summer	W T1	W T2	Summer	W T1	W T2	Summer	W T1	W T2	Summer	W T1	
EOSC 211	Transformation	D	T		D	Т							
ATSC 301	Transformation	D	Ť										
ENVR 300	Dashboard Only	Р	D	Т	D		T2						
EOSC 340	Dashboard Only		D	T		D	Т						
EOSC 354	Transformation			Р	D	Т			T2				
EOSC 410	Transformation		Р	Р	D	D	Т			T2			
ENVR 420	Transformation				Р	D	T			T2			
DSCI 100	Development			Р	D	D	Т			Т			
EOSC 329	Dashboard Only				Р	D			Т				
EOSC 429	Transformation	P = Plar	nning			Р	D		T			T	
EOSC 471	Transformation		elopment				Р	D	T			Т	
EOSC 442	Transformation	T = Tea	_				Р	D	T			T	
EOSC 372	Dashboard Only		d Teaching i			P/D			Т				
EOSC 373	Dashboard Only	X = som	happen					P/D	Т				

Timeline for infrastructure development

	^in EOSC 211 *in EOSC 350 & ATSC 301										
	2020		2021			2022			2023		
Activity	Summer	W T1	W T2	Summer	W T1	W T2	Summer	W T1	W T2	Summer	W T1
Jupyterhubs: local, cloud & procedure	D	D/T*	Т	D	T2		P = Planning D = Development				
Docker container usage strategies		D	D/T	D	T2						
Convert PDF & MD quizzes for Canvas	D	D/T*	D/T	D	T2		T = Test, Pilot, Teach T2 = 2nd interation of use				
Convert MS documents to MD	D	T^	D/T		T2						
Print Jupyter notebooks for exams, et	D	D	Т		T2		C = Continues in different coures = routine use beyond, with mods as needed				
Build / test / deploy Jupyterbooks	D	D	D/T		T2						
Integrate GitHub for course delivery		D/T			T2						
For DSCI 100: Convert R to Python			D	D	D	Т					
Dashboard build & deploy workflow		D	D/T envr300	D	T eosc329	T2					

23

Managing test questions

- Why:
 - Manage your question banks **outside** of Canvas.
 - Build unique test questions for each student.
 - Autograding in Canvas AND other tools.
- Currently piloting several techniques
 - EOSC 350 (clicker questions)
 - EOSC 211 (quizzes)
- Autograding of code or math work:
 - Not "new", but consistency across courses is desirable.
 - Stats (DataScience) has adopted *nbgrader*. Comp. Sci. is piloting other techniques.
 - EOAS will likely pilot nbgrader.

Infrastructure currently being developed

- 1) Local and/or cloud-based servers Jupyter hubs
 - Secure access
 - Large vs small classes
 - Heavy or light computing loads
 - Storage for students, or not
 - Containers (Docker) for ease of delivery and maintenance of running codes.
 - Transparent or visible back-end (eg, do students need GitHub accounts?)
- 2) GitHub repositories
 - The OCESE standard for development & project management.
 - Instructors eases collaboration with students, UBC colleagues and beyond
 - c) Students learn transferrable skills and encounter the opensource community
- 3) Commitment to software and practices that will ensure long term agility and reliability
 - a) Grading nbgrader? (currently used by DSCI 100)
 - b) Jupyter notebooks
 - c) Jupyter books with Jupytext
 - d) Communication between repositories and Canvas
 - e) Python, and chosen key libraries
- 4) Professional development and training
 - a) Docs, tutorials, workshops for tools and workflows (TAs & instructors, plus tutorials for students)
 b) Instructors prepared to adopt consistent and transferable skills and knowledge.
- 5) Systems personnel
 - a) Individuals, Dep't and/or institution.

