
5. Lessons learned: Computing for EOAS students
Convert courses to Python, Jupyter NBs, and opensource practices.

When course conversion is straightforward
When students are not beginners, e.g. 3rd, 4th year courses.
• Convert labs, lessons, etc. to Python & Jupyter Notebooks with

no fundamental change to course content.
• Check starting skills & provide catch-up resources.
• Opensource resources: e.g. 
• Develop workflows to assign, submit, grade & give feedback.
• Jupyter hubs? Only if code/datasets are huge or change often.

A common goal at 3rd & 4th year level is for students to become self-
sufficient. Therefore, most students use their own laptops.

• Assessing Jupyter notebooks is easy(ish) with < ~25 students

When course conversion is complex & costly
First exposure to computing; i.e. larger 1st or 2nd year courses.
• Critical support: Geoscie. Ed. + excellent TAs.
• Jupyter hubs must be reliable, scalable & “well managed”.

Refer to open source community experience (eg. https://2i2c.org/)
• For students on laptops (~33%): install using conda lockfiles.
• Assessment management (a new, emerging priority):

• Auto-grading: non-trivial but essential for 100+ students. E.g.
PrairieLearn, nbgrader, ottergrader, gradescope, LMS, etc.

• Improve LMS efficiency: Manage questions via its API.

General observations re. course transformation
• “Pythonization” was easier on students than instructors.
• Opensource textbooks are efficient & sustainable.
• Students want to learn Python; feedback surveys, e.g. 
• 2-3 years to shift from MatLab to Python across curriculum.
• TA & student-worker support was critical!
• Geosci. Ed. coordinator: critical for efficiency & pedagogy.

4. Lessons learned: Engaging with data & concepts

Dashboards: interactive learning resources to engage
students with quantitative concepts and data.
- Low-stakes, easy to adopt, BUT instructors need inspiration.
- Early vs late adopters: We had 3 early, 6 late & now >20 are keen.

Build, deploy, sustain
• Coding skills needed are “strong undergraduate” level.
• Opensource code libraries enable licensing as OERs.
• Start with interactive & explorative learning goals.
• Geoscience education coordinator minimizes instructor time and

supports pedagogic best practices.
• Iterate: design/build, pilot V1 with students, feedback, V2.
• Temporary host facilitates the design cycle (e.g. https://render.com/).
• In-house server needs corresponding skills to host.

o Docker containers, GitHub, a dedicated server.
o ~5hrs/mth of time with syst. mgr. skills.

• Jupyter Notebooks also work well if a hub is available.

Learning
• Follow PhET guidelines for “teaching with simulations”.

Students start by exploring, then tackle meaningful tasks.
• Groups work better than solo learning.
• Focus on concepts & real data, not details or “toy” examples.
• Keep apps versatile; give assignment instructions separately.
• Students are inspired by “hands on” learning opportunities.

o Analyzed feedback from 106
3rd year students: oceanography
elective, EOSC 372. 

o Similarly, in a 1st yr course:
75% respondents agree or
strongly agree that they

“would like more use of dashboards …”.
o From instructor: “I am so impressed ... I love how

- sliders constrain / adjust axes,
- data at real stations are chosen on a map and compared,
- graphic results can be saved to submit for assessment.”

Contributors 2020 - 2023
20 Faculty: T. Ivanochko, P. Austin, F. Jones, C. Johnson, V. Radic, A. Ameli, S. Waterhouse, M. Maldonado, K. Orians, S. Sutherland, R. Beckie, S. Allen, A. Orsi, M. Bostock, L. Heagey, L. Porritt, K. Hodge, M. Lipsen, T. Timbers (Stats), T. Campbell (Stats)
11 Graduate students: R. Merrill, N. Dahiya, W. Ye, Y. Egorovo, Y. Kuzmenko, A. Loeppky, J. McFarlane, C. Rodell, F. Rossmann, Y. Su, H. Umashankar. || 6 Undergraduates: J. Byer, B. Chang, M. Colclough, D. Platonov, C. Zhang, I. Sadeh,

Acknowledgements :
Many thanks for financial support provided by UBC Vancouver students via the Teaching and Learning
Enhancement Fund, and the UBC Work Learn Program for helping employ student contributors.

Earth Educators’ Rendezvous

Pasadena, CA, July 10-14, 2023
Lessons Learned While Implementing Opensource Computational Tools, Resources
and Practices for Learning Quantitative Earth Sciences
Francis Jones, Phil Austin, & Tara Ivanochko. Dep’t of Earth, Ocean and Atmospheric Sciences, U.B.C.

OCESE

1. Project Goals
Two main goals: Develop open-source computing capacity…
1. … to increase quantitative learning in any EOAS course, &
2. … enhance computing & math abilities of EOAS students.

Five goals in support of the main two:
3. Develop & test sustainable cloud computing facilities;
4. Produce documentation, resources, guidelines, tutorials;
5. Support faculty to adopt consistent opensource practices;
6. Support UBC’s BSc Minor in Data Science, especially DSCI 100;
7. Introduce open education materials & practices.

2. Project Deliverables
1. Python & Jupyter Notebooks (JNBs); new, or adapt MatLab & ‘R’.
2. Dashboards: Interactive apps for learning & demonstrations.
3. Data gathered about students’ and instructors’ experiences.
4. Consulting re. content, learning, pedagogy, or logistics.
5. Resources: Guidelines for Python, JNBs, GitHub, dashboards, etc.
6. Faculty ProD: COVID mainly 1-on-1 consulting.
7. Dissemination: 6 UBC events; 5 events beyond UBC.

3. Impacts: Courses and Resources
20 courses participated; ~2900 students affected, 2020 - 2023.

Course 1.
 jn

b

2.
 d

as
hb

3.
da

ta

4.
 c

on
su

lt

5.
 re

so
ur

ce

6.
 F

Pr
oD

7.
 d

iss
em

ENVR 300 3 2
EOSC 112 1 2 2
EOSC 114 1
EOSC 116 1 1
EOSC 116, 326 2
EOSC 310 1 1
EOSC 323 1
EOSC 325 3 4 3
EOSC 340 1 1
EOSC 372 1 2 1 1
EOSC 373 1
EOSC 429 1
EOSC 442 Y* 1 2 1

Table 1. Opensource computing to help expose
more students to quantitative Earth Sciences

* All 4 computing labs were converted and students'
 projects required use of corresponding learned skills.

Course 1.
 jn

b

2.
 d

as
hb

3.
da

ta

4.
 c

on
su

lt

5.
 re

so
ur

ce

ATSC 301 y* 2 1
DSCI 100 y* 2 1 4
EOSC 211 y* 12 5 2
EOSC 354 y* 1 2 1 2
EOSC 410/510 y* 1 1 1
EOSC 471 y**
EOSC 350 y^ 1 1
* Writing code is integral throughout these courses.
** All labs use extensive Python but students do little
 significant coding of their own.
^ JNBs introduced ~6 yrs ago are used throught the
 course but students do not write code.

Table 2. Enhance computing / math abilities
of EOAS undergrads

Three types
of changes
to courses

& Resources
.
.
.

Item 5.
 re

so
ur

ce

6.
 F

Pr
oD

7.
 d

iss
em

Testdrive* UBC Open JNB hub 3
Testdrive* 3rd party cloud Hub 1
Dep't server for dashboards 1
Assess dep't computing needs 1
Docs: accomplishments 1
OERs: project repository 1
Docs: Project website**
Event: eoas 3 1
Event: outside 4
Event: UBC 4
*Cloud-based Notebook hubs must be stable & scalable
**Website includes reporting, tutorials & guidelines docs.

... 1 ...

 See https://eoas-ubc.github.io/

Table 3. Opensource computing capacity in EOAS;
not course-specific

6. Lessons learned: Dep’t / Institution
Documentation & tutorials - https://eoas-ubc.github.io

Supporting instructors & TAs (pedagogy & logistics)
• COVID reduced Faculty’s capacity to participate.

Faculty support became 1-on-1 during COVID.
• Geoscience ed’n specialist can coordinate multi-course projects

(i.e. large teams) and keep the emphasis on learning. Also can
support development of new courses or learning activities.

• Teaching assistants’ energy & talent was critical for development,
implementation, and supporting instructors.

• Workshops are NOT agile enough, AND inappropriate before
successful implementation.

• Building opensource sftwr & docs (GitHub, Jupyter Books, etc.) is
a “hard sell” for those new to such practices.

• Paired teaching a key to success in 5 of 20 courses.
• Slack channel data highlights some challenges & concerns. E.g.:

>”Should we use a new ‘better’ library or a simpler,
older library to avoid cognitive overload?”

>TAs discuss student difficulties prior to teaching a lab section.
>Teaching team discusses scope-creep in a new lab exercise.

Infrastructure & servers / hubs
• Challenges & effort were greater than anticipated.
• System debugging during a “live” course was stressful for

instructors, TAs and not good for students.
• JNB issues (e.g.): • Hubs vs laptops; • ‘small’ vs scalable;

• containers & environments; • libraries & software.
• Dashboard servers need admin-level computing skills or staff.
• Deployment must be “invisible” to instructors.
• Don’t “reinvent the wheel”; J-hubs and server techniques are

known & opensource (e.g. https://2i2c.org/).

Open source and Open Education Resources (OERs)
• Critical for software development.
• Critical to work within the opensource ecosystem.

“Going it alone” is not sustainable.
• Yet - challenging when critical components go un-supported.
• An important & useful learning goal for students.
• Local Jupyter community is growing; needs fostering! e.g.
• We will be delivering project products as OERs.

Parallel project: QuEST, Quantitative Earth Sciences Transformation

Rejuvenating our quantitative Earth science curriculum.
https://blogs.ubc.ca/eoasquest/

Course O
rig

in
al

la

ng
ua

ge

te
xt

:
re

w
rit

e

te
xt

:
ad

op
t O

ER

re
do

 c
la

ss

m
at

er
ia

ls

la
bs

 &
/o

r
as

sig
s

au
to

-
gr

ad
in

g

hu
bs

lo
ca

l
in

st
al

ls

DSCI 100 * R y y y y y
EOSC 211 * Matlab y y y y y y
EOSC 442 ^ MatLab y y
EOSC 354 ^ MatLab y y
EOSC 410/510 ^ MatLab y y
EOSC 471 ^ MatLab y y
ATSC 301 ** y y y y y
* Introductory courses - complex, labor intensive, time consuming, multifaceted.
^ Senior courses: some programming assumed, conversion can be straightforward.
** ATSC 301, already Python-based, served as precedent for several OCESE tasks.

Table 4. Course conversions from original code environment
to Python using Jupyter Notebooks.

EOSC372: What did you like about
learning with this dashboard?

OceanographyHydrogeology Daisyworld Atmospheric CO2 Climate factorsStruct. Geol.

See all 17 at https://eoas-ubc.github.io/dashboards.html

The OCESE Project: Opensource Computing for Earth Science Education
https://eoas-ubc.github.io

Costs: larger intro. courses need complete rebuilds. E.g. …
First year stats course, “R”  Python:

• 9mths, 4 students, 3 profs. • Rewrite original opensource text.
• Adapt & test all lessons, learning activities & resources.
• Stay compatible with original “R” version of the course.

Second year Earth science computing, MatLab  Python:
• 12mths, 2 students, 2 profs. • Adopt an opensource text.
• Adapt all lessons & learning activities. • Pilot use of Jupyter hubs (twice).
• Re-work autograding workflow.

$$$

$$$$

Cost for straightforward course transformations
• Convert ~10 assignments / labs: ~2mths student programmer;
• Pilot first term: a “strong” TA, but otherwise little else changed.
• Minor adjustments to workflow and lessons after pilot.

$$

No. courses affected:

8
10
11
14
14

~ 20 hrs for e.g. Mohr’s circles for structural geology.
~ 2 mths for e.g. cmip6-dash compares CMIP6 models and

scenarios for different climate variables.
See https://eoas-ubc.github.io/dashboards.html for details.

$
$$

Cost
to

build

• 3-4 short meetings during design & prototyping;
• Prepare / manage 1st live use (like any new learning activity);
• Gather feedback data (GeoSci Ed support can build & analyze)
• 1-2 short meetings to followup and fine tune

$Instructors’
costs

Creative commons license:
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0 US)

https://creativecommons.org/licenses/by-nc-sa/3.0/us/

https://2i2c.org/
https://render.com/
https://eoas-ubc.github.io/
https://2i2c.org/
https://blogs.ubc.ca/eoasquest/
https://eoas-ubc.github.io/dashboards.html
https://eoas-ubc.github.io/
https://eoas-ubc.github.io/dashboards.html
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide Number 1

