
5. Lessons learned:   Computing for EOAS students
Convert courses to Python, Jupyter NBs, and opensource practices.

When course conversion is straightforward
When students are not beginners, e.g.  3rd, 4th year courses. 
• Convert labs, lessons, etc. to Python & Jupyter Notebooks with 

no fundamental change to course content. 
• Check starting skills & provide  catch-up resources.
• Opensource resources:  e.g.                                 
• Develop workflows to assign, submit, grade & give feedback.
• Jupyter hubs? Only if code/datasets are huge or change often. 

A common goal at 3rd & 4th year level is for students to become self-
sufficient. Therefore, most students use their own laptops. 

• Assessing Jupyter notebooks is easy(ish) with  < ~25 students

When course conversion is complex & costly
First exposure to computing; i.e. larger 1st or 2nd year courses.
• Critical support: Geoscie. Ed.  +  excellent TAs.
• Jupyter hubs must be reliable, scalable & “well managed”. 

Refer to open source community experience (eg. https://2i2c.org/ )
• For students on laptops (~33%): install using conda lockfiles.
• Assessment management (a new, emerging priority): 

• Auto-grading: non-trivial but essential for 100+ students. E.g. 
PrairieLearn, nbgrader, ottergrader, gradescope, LMS, etc.

• Improve LMS efficiency: Manage questions via its API.

General observations re. course transformation
• “Pythonization” was easier on students than instructors.
• Opensource textbooks are efficient & sustainable.
• Students want to learn Python; feedback surveys, e.g.       
• 2-3 years to shift from MatLab to Python across curriculum. 
• TA & student-worker support was critical!
• Geosci. Ed. coordinator: critical for efficiency & pedagogy.

4. Lessons learned:  Engaging with data & concepts

Dashboards: interactive learning resources to engage 
students with quantitative concepts and data.
- Low-stakes, easy to adopt, BUT instructors need inspiration. 
- Early vs late adopters: We had 3 early, 6 late & now >20 are keen.

Build, deploy, sustain
• Coding skills needed are “strong undergraduate” level.
• Opensource code libraries enable licensing as OERs.
• Start with interactive & explorative learning goals. 
• Geoscience education coordinator minimizes instructor time and 

supports pedagogic best practices. 
• Iterate: design/build, pilot V1 with students, feedback, V2.
• Temporary host facilitates the design cycle   (e.g. https://render.com/). 
• In-house server needs corresponding skills to host.

o Docker containers, GitHub, a dedicated server.
o ~5hrs/mth of time with syst. mgr. skills.

• Jupyter Notebooks also work well if a hub is available. 

Learning
• Follow PhET guidelines for “teaching with simulations”. 

Students start by exploring, then tackle meaningful tasks. 
• Groups work better than solo learning.
• Focus on concepts & real data, not details or “toy” examples. 
• Keep apps versatile; give assignment instructions separately.
• Students are inspired by “hands on” learning opportunities. 

o Analyzed feedback from 106
3rd year students: oceanography
elective, EOSC 372.         

o Similarly, in a 1st yr course: 
75% respondents agree or 
strongly agree that they 

“would like more use of dashboards …”. 
o From instructor:    “I am so impressed ... I love how 

- sliders constrain / adjust axes, 
- data at real stations are chosen on a map and compared, 
- graphic results can be saved to submit for assessment.”
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1. Project Goals
Two main goals:  Develop open-source computing capacity…
1.  … to increase quantitative learning in any EOAS course, &
2.  … enhance computing & math abilities of EOAS students. 

Five goals in support of the main two:
3. Develop & test sustainable cloud computing facilities;
4. Produce documentation, resources, guidelines, tutorials;
5. Support faculty to adopt consistent opensource practices;
6. Support UBC’s BSc Minor in Data Science, especially DSCI 100;
7. Introduce open education materials & practices.

2. Project Deliverables
1. Python & Jupyter Notebooks (JNBs); new, or adapt MatLab & ‘R’.
2. Dashboards: Interactive apps for learning & demonstrations.
3. Data gathered about students’ and instructors’ experiences.
4. Consulting re. content, learning, pedagogy, or logistics.
5. Resources: Guidelines for Python, JNBs, GitHub, dashboards, etc. 
6. Faculty ProD: COVID mainly 1-on-1 consulting.
7. Dissemination: 6 UBC events; 5 events beyond UBC.

3. Impacts: Courses and Resources
20 courses participated;  ~2900 students affected, 2020 - 2023.
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ENVR 300 3 2
EOSC 112 1 2 2
EOSC 114 1
EOSC 116 1 1
EOSC 116, 326 2  
EOSC 310 1 1
EOSC 323 1  
EOSC 325 3 4 3
EOSC 340 1 1
EOSC 372 1 2 1 1
EOSC 373 1
EOSC 429 1
EOSC 442 Y* 1 2 1

Table 1.   Opensource computing to help expose
more students to quantitative Earth Sciences 

* All 4 computing labs were converted and students' 
    projects required use of corresponding learned skills.
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ATSC 301 y* 2 1
DSCI 100 y* 2 1 4
EOSC 211 y* 12 5 2
EOSC 354 y* 1 2 1 2
EOSC 410/510 y* 1 1 1
EOSC 471 y**
EOSC 350 y^ 1 1
* Writing code is integral throughout these courses.
** All labs use extensive Python but students do little 
     significant coding of their own.
^ JNBs introduced ~6 yrs ago are used throught the 
     course but students do not write code. 

Table 2.   Enhance computing / math abilities 
of EOAS undergrads
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Testdrive* UBC Open JNB hub 3
Testdrive* 3rd party cloud Hub 1
Dep't server for dashboards 1
Assess dep't computing needs 1
Docs:  accomplishments 1
OERs: project repository 1
Docs: Project website**
Event: eoas 3 1
Event: outside 4
Event: UBC 4
*Cloud-based Notebook hubs must be stable & scalable
**Website includes reporting, tutorials & guidelines docs.

... 1 ...

     See   https://eoas-ubc.github.io/ 

Table 3.   Opensource computing capacity in EOAS;
not course-specific

6. Lessons learned:   Dep’t / Institution
Documentation & tutorials - https://eoas-ubc.github.io

Supporting instructors & TAs  (pedagogy & logistics)
• COVID reduced Faculty’s capacity to participate. 

Faculty support became 1-on-1 during COVID. 
• Geoscience ed’n specialist can coordinate multi-course projects 

(i.e. large teams) and keep the emphasis on learning. Also can 
support development of new courses or learning activities.

• Teaching assistants’ energy & talent was critical for development, 
implementation, and supporting instructors. 

• Workshops are NOT agile enough, AND inappropriate before 
successful implementation. 

• Building opensource sftwr & docs (GitHub, Jupyter Books, etc.) is 
a “hard sell” for those new  to such practices. 

• Paired teaching a key to success in 5 of 20 courses. 
• Slack channel data highlights some challenges & concerns. E.g.:

>”Should we use a new ‘better’ library or a simpler, 
older library to avoid cognitive overload?” 

>TAs discuss student difficulties prior to teaching a lab section. 
>Teaching team discusses scope-creep in a new lab exercise. 

Infrastructure & servers / hubs
• Challenges & effort were greater than anticipated. 
• System debugging during a “live” course was stressful for 

instructors, TAs and not good for students. 
• JNB issues (e.g.): • Hubs vs laptops; • ‘small’ vs scalable; 

• containers & environments; • libraries & software.
• Dashboard servers need admin-level computing skills or staff. 
• Deployment must be “invisible” to instructors. 
• Don’t “reinvent the wheel”;  J-hubs and server techniques are 

known & opensource (e.g. https://2i2c.org/). 

Open source and Open Education Resources (OERs)
• Critical for software development. 
• Critical to work within the opensource ecosystem. 

“Going it alone” is not sustainable.
• Yet - challenging when critical components go un-supported.
• An important & useful learning goal for students.
• Local Jupyter community is growing; needs fostering! e.g.  
• We will be delivering project products as OERs.

--------------
Parallel project: QuEST, Quantitative Earth Sciences Transformation

Rejuvenating our quantitative Earth science curriculum.
https://blogs.ubc.ca/eoasquest/
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DSCI 100 * R y y y y y
EOSC 211 * Matlab y y y y y y
EOSC 442 ^ MatLab y y
EOSC 354 ^ MatLab y y
EOSC 410/510 ^ MatLab y y
EOSC 471 ^ MatLab y y
ATSC 301 ** y y y y y
* Introductory courses - complex, labor intensive, time consuming, multifaceted.
^ Senior courses: some programming assumed, conversion can be straightforward.
** ATSC 301, already Python-based, served as precedent for several OCESE tasks.

Table 4.   Course conversions from original code environment 
to Python using Jupyter Notebooks.

EOSC372: What did you like about 
learning with this dashboard?

OceanographyHydrogeology Daisyworld Atmospheric CO2 Climate factorsStruct. Geol.

See all 17 at https://eoas-ubc.github.io/dashboards.html

The OCESE Project:  Opensource Computing for Earth Science Education
https://eoas-ubc.github.io

Costs: larger intro. courses need complete rebuilds. E.g. …
First year stats course, “R”  Python:   

•  9mths, 4 students, 3 profs.   • Rewrite original opensource text. 
• Adapt & test all lessons, learning activities & resources. 
• Stay compatible with original “R” version of the course.

Second year Earth science computing, MatLab  Python:  
• 12mths, 2 students, 2 profs.     • Adopt an opensource text. 
• Adapt all lessons & learning activities. • Pilot use of Jupyter hubs (twice). 
• Re-work autograding workflow.

$$$

$$$$

Cost for straightforward course transformations
• Convert ~10 assignments / labs: ~2mths student programmer; 
• Pilot first term: a “strong” TA, but otherwise little else changed.
• Minor adjustments to workflow and lessons after pilot.

$$

No. courses affected:

8
10
11
14
14

~ 20 hrs for e.g. Mohr’s circles for structural geology. 
~ 2 mths for e.g. cmip6-dash compares CMIP6 models and 

scenarios for different climate variables.
See https://eoas-ubc.github.io/dashboards.html for details.

$
$$

Cost
to 

build

• 3-4 short meetings during design & prototyping; 
• Prepare / manage 1st live use (like any new learning activity); 
• Gather feedback data (GeoSci Ed support can build & analyze)
• 1-2 short meetings to followup and fine tune

$Instructors’ 
costs
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